Library | Module

Class pfcGeomCurve



Description

This class provides information for a geometry curve or edge.
Direct Parent Classes:
pfcObject
Direct Known Subclasses:
pfcEdge, pfcCurve



Property Summary

/* readonly */ booleanIsVisible
true if the geometry is visible and active, false if it is invisible and inactive. Inactive geometry may not have all geometric properties defined.



Method Summary

pfcCurveXYZDataEval3DData (number Param)
Returns a pfcCurveXYZData object with information on the point represented by input parameter t.
pfcCurveXYZDataEvalFromLength (number StartParameter, number Length)
Returns a CURVEXYZData object with information on the point that is a specified distance from the starting point as specified by input parameter t.
numberEvalLength ()
Finds the length of the specified edge.
numberEvalLengthBetween (number Param1, number Param2)
Finds the length of the specified curve between two given parameters.
numberEvalParameter (pfcPoint3D Point)
Finds the corresponding normalized parameter on the curve, given the XYZ point.
pfcCurveDescriptorGetCurveDescriptor ()
This method returns a data object containing the geometry of the edge or curve.
pfcFeatureGetFeature ()
Returns the feature which contains the geometry.
pfcBSplineDescriptorGetNURBSRepresentation ()
This method returns the geometry of the edge or curve as a non-uniform rational B-spline curve.



Property Detail


/* readonly */ booleanIsVisible

true if the geometry is visible and active, false if it is invisible and inactive. Inactive geometry may not have all geometric properties defined.





Method Detail


pfcCurveXYZDataEval3DData (number Param)

Returns a pfcCurveXYZData object with information on the point represented by input parameter t.

If the curve is a composite curve,first derivative pfcCurveXYZData.Derivative1 and second derivative pfcCurveXYZData.Derivative2 are not accessible and will benull.

Exceptions thrown (but not limited to):

pfcXToolkitNotImplemented - The argument p_curve represents a composite curve, while deriv1 or deriv2 is not NULL.


Parameters:
Param
The t parameter on the edge.
Returns:
The evaluation data, including the resulting point, the first and second derivatives, and the normal to the surface



pfcCurveXYZDataEvalFromLength (number StartParameter, number Length)

Returns a CURVEXYZData object with information on the point that is a specified distance from the starting point as specified by input parameter t.

Exceptions thrown (but not limited to):

pfcXToolkitBadSrfCrv - The input argument is invalid.


Parameters:
StartParameter
The starting t parameter
Length
The distance from the starting parameter t to the resulting point
Returns:
The point at the specified distance from the starting parameter



numberEvalLength ()

Finds the length of the specified edge.
Returns:
The edge length



numberEvalLengthBetween (number Param1, number Param2)

Finds the length of the specified curve between two given parameters.

Exceptions thrown (but not limited to):

pfcXToolkitBadSrfCrv - The input argument is invalid.


Parameters:
Param1
The start t parameter
Param2
The end t parameter
Returns:
The curve length between the parameters.



numberEvalParameter (pfcPoint3D Point)

Finds the corresponding normalized parameter on the curve, given the XYZ point.
Parameters:
Point
The XYZ point. The point does not need to lie on the curve.If the point is not on the curve, the function finds the closest curve point.
Returns:
The t parameter that represents the input Point3D object.



pfcCurveDescriptorGetCurveDescriptor ()

This method returns a data object containing the geometry of the edge or curve.

Exceptions thrown (but not limited to):

pfcXToolkitInvalidType - The specified data is not a composite curve data structure.


Returns:
The edge or curve geometry



pfcFeatureGetFeature ()

Returns the feature which contains the geometry.
Returns:
The feature.



pfcBSplineDescriptorGetNURBSRepresentation ()

This method returns the geometry of the edge or curve as a non-uniform rational B-spline curve.
Returns:
The B-spline curve geometry